Co-composting of EFB and POME


Experience was drawn from the implementation and monitoring of a co-composting of EFB and POME registered as a CDM project activity. The project was designed based on the literature existing at that time and significant discrepancies were observed after the optimization of the composting process. This paper provides insights on the performance of the project in terms of emission reductions (CDM aspects), substitution rate of chemical fertilizer achieved (composting process), and discusses the observed discrepancies with literature values. In comparison to the results of 2002 from Schuchardt et al., more abundant rainfall showed to significantly slow down the composting process, lengthening the active period phase to 20 weeks. Comparable ratios of POME per EFB were however observed. In terms of inorganic fertilizer substitution, 7.18 dry tons of the produced compost could theoretically substitute a ton of inorganic fertilizer blend with a comparable balance of N P K Mg. In case only compost is applied, 17.3 dry tons of compost would be needed to satisfy or exceed these nutrients needs for a plantation in peninsular Malaysia.

Key words: Co-Composting, EFB, POME, Compost nutrients, CDM

Full article (pdf)